Python Set symmetric_difference()

The symmetric_difference() method returns all the items present in given sets, except the items in their intersections.

Example

A = {'a', 'b', 'c', 'd'}
B = {'c', 'd', 'e' }

# returns all items to result variable except the items on intersection result = A.symmetric_difference(B) print(result)
# Output: {'a', 'b', 'e'}

symmetric_difference() Syntax

The syntax of the symmetric_difference() method is:

A.symmetric_difference(B)

Here, A and B are two sets.


symmetric_difference() Parameter

The symmetric_difference() method takes a single parameter:

  • B - a set that pairs with set A to find their symmetric difference

symmetric_difference() Return Value

The symmetric_difference() method returns:

  • a set with all the items of A and B excluding the excluding the identical items

Example 1: Python Set symmetric_difference()

A = {'Python', 'Java', 'Go'}
B = {'Python', 'JavaScript', 'C' }

# returns the symmetric difference of A and B to result variable result = A.symmetric_difference(B)
print(result)

Output

{'Go', 'Java', 'C', 'JavaScript'}

In the above example, we have used symmetric_difference() to return the symmetric difference of A and B to the result variable.

Here, 'Python' is present in both sets A and B. So, the method returns all the items of A and B to result except 'Python'.


Example 2: Python Set symmetric_difference()

A = {'a', 'b', 'c'}
B = {'a', 'b', 'c'}

# returns empty set result = A.symmetric_difference(B)
print(result)

Output

set()

In the above example, we have used symmetric_difference() with two sets A and B. Here, A and B are superset of each other, meaning all the items of A are present in B and vice versa.

In this case, the method returns an empty set.


Example 3: Symmetric Difference Using ^ Operator

We can also find the symmetric difference using the ^ operator in Python. For example,

A = {'a', 'b', 'c', 'd'}
B = {'c', 'd', 'e' }
C = {'i'}

# works as (A).symmetric_difference(B) print(A ^ B) # symmetric difference of 3 sets print(A ^ B ^ C)

Output

{'a', 'b', 'e'}
{'b', 'a', 'i', 'e'}

In the above example, we have used the ^ operator to find the symmetric difference of A and B and A, B and C. With ^ operator, we can also find the symmetric difference of 3 sets.