The add()
function performs element-wise addition of two arrays.
import numpy as np
# create two arrays
array1 = np.array([1, 2, 3])
array2 = np.array([4, 5, 6])
# perform element-wise addition of the two arrays
result = np.add(array1, array2)
print(result)
# Output: [5 7 9]
add() Syntax
The syntax of add()
is:
numpy.add(x1, x2, out = None, where = True, dtype = None)
add() Arguments
The add()
function takes following arguments:
x1
andx2
- two input arrays or scalars to be addedout
(optional) - the output array where the result will be storedwhere
(optional) - a boolean array or condition specifying which elements to adddtype
(optional) - data type of the output array
add() Return Value
The add()
function returns the array containing the sum of corresponding element(s) from two arrays — x1 and x2.
Example 1: Add NumPy Array by scalar (Single Value)
import numpy as np
# create an array
array1 = np.array([1, 2, 3])
# add a scalar value to the array
result = np.add(array1, 10)
print(result)
Output
[11 12 13]
Here, the np.add()
function is used to add a scalar value of 10 to each element of the array1 array.
Example 2: Use of out and where in add()
import numpy as np
# create two input arrays
array1 = np.array([1, 2, 3, 5])
array2 = np.array([10, 20, 30, 50])
# create a boolean array to specify the condition for element selection
condition = np.array([True, False, True, True])
# create an empty array to store the subtracted values
result = np.empty_like(array1)
# add elements in array1 and array2 based on values in the condition array and
# store the sum in the result array
np.add(array1, array2, where=condition, out=result)
print(result)
Output
[11 0 33 55]
The output shows the result of the addition operation, where the elements from array1 and array2 are added together only where the corresponding condition in the condition array is True
.
The second element in result is 0 because the corresponding condition value is False, and therefore, the addition does not take place for that element.
Here, out=result
specifies that the output of np.add()
should be stored in the result array
Example 3: Use of dtype Argument in add()
import numpy as np
# create two arrays
array1 = np.array([1, 2, 3])
array2 = np.array([4, 5, 6])
# perform addition with floating-point data type
resultFloat = np.add(array1, array2, dtype=np.float64)
# perform addition with integer data type
resultInt = np.add(array1, array2, dtype=np.int32)
# print the result with floating-point data type
print("Floating-point result:")
print(resultFloat)
# print the result with integer data type
print("Integer result:")
print(resultInt)
Output
Floating-point result: [5. 7. 9.] Integer result: [5 7 9]
Here, by specifying the desired dtype
, we can control the data type of the output array according to our specific requirements.
Here, we have specified the data type of the output array with the dtype
argument.
Note: To learn more about the dtype
argument, please visit NumPy Data Types.