The absolute()
function is used to compute the absolute value of each element in an array.
import numpy as np
array1 = np.array([-1, -2, 3, -4, 5])
# use absolute() to find absolute values of each element in array1
result = np.absolute(array1)
print(result)
# Output: [1 2 3 4 5]
absolute() Syntax
The syntax of absolute()
is:
numpy.absolute(array, out=None)
absolute() Arguments
The absolute()
function takes following arguments:
array
- the input array whose absolute values is computedout
(optional) - the output array where the result is stored
absolute() Return Value
The absolute()
function returns an array that contains the absolute value of each element in the input array.
Example 1: Find Absolute Values of 2D Array Elements
import numpy as np
# create a 2D array
array1 = np.array([[-1, 2, -3.5],
[4, -5, -6]])
# compute the absolute values of each element in array1
result = np.absolute(array1)
print(result)
Output
[[1. 2. 3.5] [4. 5. 6. ]]
Here, we have used the absolute()
function to compute the absolute values of each element in the array1 array.
The absolute value of -1 is 1, 2 is 2, -3.5 is 3.5 and so on.
Example 2: Use out to Store Output in Desired Location
import numpy as np
# create an array
array1 = np.array([-12, 23, -25, -41, -52])
# create an empty array with the same shape as array1
result = np.zeros_like(array1)
# store the result in out_array
np.absolute(array1, out=result)
print(result)
Output
[12 23 25 41 52]
Here, the absolute()
function is used with the out
parameter set to result. This ensures that the result of computing the absolute values is stored in result.
Example 3: Working With Complex Numbers
import numpy as np
complex_nums = np.array([3 + 4j, -2 - 5j, 1 + 1j])
# calculate absolute value of complex_nums
result = np.absolute(complex_nums)
print(result)
Output
[5. 5.38516481 1.41421356]
Here, the absolute()
function is applied to the complex_nums array, and it returns the array result containing the magnitudes of the complex numbers.
The magnitudes are calculated as the absolute values of the complex numbers using the formula:
√(a^2 + b^2)
Here, a and b are the real and imaginary parts of the complex number, respectively.