The linspace()
method creates an array with evenly spaced elements over an interval.
import numpy as np
# create an array with 3 elements between 5 and 10
array1 = np.linspace(5, 10, 3)
print(array1)
# Output: [ 5. 7.5 10. ]
linspace() Syntax
The syntax of linspace()
is:
numpy.linspace(start, stop, num = 50, endpoint = True, retstep = False, dtype = None, axis = 0)
linspace() Argument
The linspace()
method takes the following arguments:
start
- the start value of the sequence, 0 by default (can bearray_like
)stop
- the end value of the sequence (can bearray_like
)num
(optional)- number of samples to generate (int
)endpoint
(optional)- specifies whether to include end value (bool
)retstep
(optional)- ifTrue
, returns steps between the samples (bool
)dtype
(optional)- type of output arrayaxis
(optional)- axis in the result to store the samples(int
)
Notes:
step
can't be zero. Otherwise, you'll get aZeroDivisionError
.- If
dtype
is omitted,linspace()
will determine the type of the array elements from the types of other parameters. - In
linspace()
, thestop
value is inclusive.
linspace() Return Value
The linspace()
method returns an array of evenly spaced values.
Note: If retstep
is True
, it also returns the stepsize i.e. interval between two elements.
Example 1: Create a 1-D Array Using linspace
import numpy as np
# create an array of 5 elements between 2.0 and 3.0
array1 = np.linspace(2.0, 3.0, num=5)
print("Array1:", array1)
# create an array of 5 elements between 2.0 and 3.0 excluding the endpoint
array2 = np.linspace(2.0, 3.0, num=5, endpoint=False)
print("Array2:", array2)
# create an array of 5 elements between 2.0 and 3.0 with the step size included
array3, step_size = np.linspace(2.0, 3.0, num=5, retstep=True)
print("Array3:", array3)
print("Step Size:", step_size)
Output
Array1: [2. 2.25 2.5 2.75 3. ] Array2: [2. 2.2 2.4 2.6 2.8] Array3: [2. 2.25 2.5 2.75 3. ] Step Size: 0.25
Example 2: Create an n-D Array Using linspace
import numpy as np
# create an array of 5 elements between [1, 2] and [3, 4]
array1 = np.linspace([1, 2], [3, 4], num=5)
print("Array1:")
print(array1)
# create an array of 5 elements between [1, 2] and [3, 4] along axis 1
array2 = np.linspace([1, 2], [3, 4], num=5, axis=1)
print("\nArray2:")
print(array2)
Output
Array1: [[1. 2. ] [1.5 2.5] [2. 3. ] [2.5 3.5] [3. 4. ]] Array2: [[1. 1.5 2. 2.5 3. ] [2. 2.5 3. 3.5 4. ]]
Key Differences Between arange and linspace
Both np.arange()
and np.linspace()
are NumPy functions used to generate numerical sequences, but they have some differences in their behavior.
arange()
generates a sequence of values fromstart
tostop
with a givenstep
size whereaslinspace
generates a sequence ofnum
evenly spaced values fromstart
tostop
.arange()
excludesstop
value whereaslinspace
includesstop
value unless specified otherwise byendpoint = False
Let us see an example.
import numpy as np
# elements between 10 and 40 with stepsize 4
array1 = np.arange(10, 50 , 4)
# generate 4 elements between 10 and 40
array2 = np.linspace(10, 50 , 4)
print('Using arange:', array1) # doesn't include 50
print('Using linspace:', array2) #includes 50
Output
Using arange: [10 14 18 22 26 30 34 38 42 46] Using linspace: [10. 23.33333333 36.66666667 50. ]