The apply_along_axis()
method allows you to apply a function to each row or column of a multidimensional array, without using explicit loops.
import numpy as np
# create a 2D array
arr = np.array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
# function to calculate the sum of an array
def sumArray(arr):
return np.sum(arr)
# apply the sumArray function along the rows (axis=1)
result = np.apply_along_axis(sumArray, axis=1, arr=arr)
print(result)
# Output: [ 6 15 24]
apply_along_axis() Syntax
The syntax of apply_along_axis()
is:
numpy.apply_along_axis(func1d, axis, arr, *args, **kwargs)
apply_along_axis() Arguments
The apply_along_axis()
method takes following arguments:
func1d
- the function to apply along the specified axisaxis
- the axis along which the function is appliedarr
- the input array to which the function will be applied*args
and**kwargs
- additional arguments and keyword arguments present infunc1d
Note: The func1d
should take a 1D array as input and return a single value or an array of values.
apply_along_axis() Return Value
The apply_along_axis()
method returns the resultant array with functions applied.
Example 1: Apply a Function That Returns a Single Value
import numpy as np
# create a 2D array
arr = np.array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
# define a function to return the last element of an array
def lastItem(subArr):
return np.max(subArr[-1])
# return last item along the rows (axis=1)
result = np.apply_along_axis(lastItem, axis=1, arr=arr)
print(result)
# return last item along the columns (axis=0)
result = np.apply_along_axis(lastItem, axis=0, arr=arr)
print(result)
Output
[3 6 9] [7 8 9]
Example 2: Apply a Function That Returns an Array of Values
We can also return an array of values from the function.
import numpy as np
# create a 2D array
arr = np.array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
# function to return the square of elements of an array
def square(arr):
return (arr*arr)
# return the square of elements
result = np.apply_along_axis(square, axis = 0, arr=arr)
print(result)
Output
[[ 1 4 9] [16 25 36] [49 64 81]]
Example 3: Apply a Function That Returns an N-D Array of Values
We can return an n-D array of values from the function.
Let's see an example.
import numpy as np
# create a 2D array
arr = np.array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
# define a function that returns a 2D array
def square_and_cube(arr):
return np.array([arr**2, arr**3])
# apply the square_and_cube function along the columns (axis=0)
result = np.apply_along_axis(square_and_cube, axis=0, arr=arr)
print('Along axis 0\n',result)
# apply the square_and_cube function along the rows (axis=1)
result = np.apply_along_axis(square_and_cube, axis=1, arr=arr)
print('Along axis 1\n',result)
Output
Along axis 0 [[[ 1 4 9] [ 16 25 36] [ 49 64 81]] [[ 1 8 27] [ 64 125 216] [343 512 729]]] Along axis 1 [[[ 1 4 9] [ 1 8 27]] [[ 16 25 36] [ 64 125 216]] [[ 49 64 81] [343 512 729]]]
For a function that returns a higher dimensional array, the dimensions are inserted in place of the axis dimension.
Example 4: Apply a lambda Function to an Array
Instead of defining a function, we can directly pass a lambda function.
Let's see an example.
import numpy as np
# create a 2D array
arr = np.array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
# apply the summation lambda function along the rows (axis=1)
result = np.apply_along_axis(lambda arr:np.sum(arr), axis=1, arr=arr)
print(result)
Output
[ 6 15 24]