The pad()
method adds a specified value around the array axis to achieve a desired length.
import numpy as np
# create a 2D array
array = np.array([[1, 2],
[3, 4]])
# pad the array with zeros
padded_array = np.pad(array, pad_width=1)
print(padded_array)
'''
Output:
[[0 0 0 0]
[0 1 2 0]
[0 3 4 0]
[0 0 0 0]]
'''
pad() Syntax
The syntax of pad()
is:
numpy.pad(array, pad_width, mode = 'constant', **kwargs)
pad() Arguments
The pad()
method takes multiple arguments:
array
- array to padpad_width
- number of values to pad on each axismode
(optional) - determines how the values are padded**kwargs
(optional) - additional keyword arguments that can be used
pad() Return Value
The pad()
method returns a new array with padded values on the borders of the original array.
Pad a 2-D Array
import numpy as np
# create a 2D array
array = np.array([[1, 2],
[3, 4]])
# pad the array with one zero on all sides
padded_array = np.pad(array, pad_width=1)
print('Array padded by width 1 on all sides:\n', padded_array)
# pad the array with one zero before and 2 zeros after the original array,
# one zero on top and left and two zeros on the right and bottom sides
padded_array = np.pad(array, pad_width=(1, 2))
print('Array padded by width (1,2):\n', padded_array)
# pad the array with zeros using different widths for each axis
# (1, 2) on top and bottom, (2, 1) on left and right
padded_array = np.pad(array, pad_width=((1, 2), (2, 1)))
print('Array padded by width (1,2), (2,1):\n', padded_array)
Output
Array padded by width 1 on all sides: [[0 0 0 0] [0 1 2 0] [0 3 4 0] [0 0 0 0]] Array padded by width (1,2): [[0 0 0 0 0] [0 1 2 0 0] [0 3 4 0 0] [0 0 0 0 0] [0 0 0 0 0]] Array padded by width (1,2), (2,1): [[0 0 0 0 0] [0 0 1 2 0] [0 0 3 4 0] [0 0 0 0 0] [0 0 0 0 0]]
Mode Argument in pad()
The mode
is an optional argument in pad() that specifies the pattern in which the array elements are padded.
The mode can be:
'constant'
: pads with a constant value'edge'
: pads with the nearest edge value'linear_ramp'
: pads with a linear ramp between the edge value and the end value'maximum'
: pads with the maximum value of the input array'mean'
: pads with the mean value of the input array'median'
: pads with the median value of the input array'minimum'
: pads with the minimum value of the input array'reflect'
: pads by mirroring the values of the array'symmetric'
: pads by mirroring the values, including the boundary values'wrap'
: pads with a circular wrap of the array'empty'
: pads with undefined values
The **kwargs
parameter allows you to pass additional keyword arguments specific to the chosen padding mode. Different modes have different optional arguments specified by **kwargs
to customize their behavior.
Example 1: Padding With 'constant' Mode
In numpy.pad()
, we can use the 'constant'
mode to set the padding value. It takes an additional argument constant_values
.
Let's see an example.
import numpy as np
# create a 1-D array
array1 = np.array([1, 2, 3, 4])
# pad an array with a constant value -1
array2 = np.pad(array1, pad_width = 1, mode = 'constant', constant_values = -1)
print(array2)
Output
[-1 1 2 3 4 -1]
Notes:
'constant'
is the default mode.- If
constant_values
is not specified, 0 is used by default.
Example 2: Padding With 'edge' Mode
In numpy.pad()
, 'edge'
mode extends the values at the edges of the array outward.
import numpy as np
# create an 1D array
array1 = np.array([1, 2, 3, 4])
# pad array with edge values
array2 = np.pad(array1, pad_width = 1, mode = 'edge')
print(array2)
Output
[1 1 2 3 4 4]
Example 3: Padding With 'linear_ramp' Mode
In numpy.pad()
, 'linear_ramp'
specifies the starting and ending padding values. It supports one additional argument end_values
.
import numpy as np
# create a 1D array
array1 = np.array([1, 2, 3, 4])
# pad the array by applying linear_ramp from 4 to -1 on both sides
array2 = np.pad(array1, pad_width = 1, mode = 'linear_ramp', end_values = (4, -1))
print("Array padded with linear ramp:\n", array2)
# pad the array with wider padding and the same linear ramp
array3 = np.pad(array1, pad_width = 2, mode='linear_ramp', end_values = (4, -1))
print("Array padded with linear ramp and wider padding:\n", array3)
Output
Array padded with linear ramp: [ 4 1 2 3 4 -1] Array padded with linear ramp and wider padding: [ 4 2 1 2 3 4 1 -1]
Note: The linear_ramp
mode requires the specified end_values
to have the same dtype
as the array.
Example 4: Padding With 'maximum' and 'minimum' Mode
In numpy.pad()
, 'maximum'
mode pads the input array with the maximum value of the input array whereas 'minimum'
mode pads with the minimum value. They support one additional argument stat_length
.
stat_length
specifies the number of values at the edge of each axis used to calculate the statistic value. It is None
by default and uses the entire array.
import numpy as np
# create a 1-D array
array1 = np.array([1, 2, 3, 4])
# pad the array with the maximum value from the array
array2 = np.pad(array1, pad_width = 1, mode = 'maximum')
print(array2) # [4 1 2 3 4 4]
# pad the array with the minimum value from the array
array3 = np.pad(array1, pad_width = 1, mode = 'minimum')
print(array3) # [1 1 2 3 4 1]
# pad the array with the maximum value from two adjacent edge values
array4 = np.pad(array1, pad_width = 1, mode = 'maximum',stat_length = 2)
print(array4) # [2 1 2 3 4 4]
# pad array with the minimum value from two adjacent edge values
array5 = np.pad(array1, pad_width = 1, mode = 'minimum',stat_length = 2)
print(array5) # [1 1 2 3 4 3]
Example 5: Padding With 'mean' and 'median' Mode
In numpy.pad()
, 'mean'
mode pads the input array with the mean value of the input array whereas 'median'
mode pads the input array with the median value of the input array. They support one additional argument stat_length
.
stat_length
specifies the number of values at the edge of each axis used to calculate the statistic value. It is None
by default and uses the entire array.
import numpy as np
# create an 1D array
array1 = np.array([1, 3, 5, 9, 11])
# pad array with the mean value from the whole array
array2 = np.pad(array1, pad_width = 1, mode = 'mean')
print(array2) # [ 6 1 3 5 9 11 6]
# pad array with the median value from the whole array
array3 = np.pad(array1, pad_width = 1, mode = 'median')
print(array3) # [ 5 1 3 5 9 11 5]
# pad array with the mean value from 3 adjacent edge values
array4 = np.pad(array1, pad_width = 1, mode = 'mean',stat_length = 3)
print(array4) # [ 3 1 3 5 9 11 8]
# pad array with the median value from 3 adjacent edge values
array5 = np.pad(array1, pad_width = 1, mode = 'median',stat_length = 3)
print(array5) # [ 3 1 3 5 9 11 9]
Example 6: Padding With reflect and symmetric mode
In numpy.pad()
, 'reflect'
mode pads the input array by mirroring the values of the array, and 'symmetric'
mode pads by mirroring the values of the array including the boundary values.
They support one additional argument reflect_type
.
reflect_type
can be even
or odd
:
even
(default): padding is done by using the mirrored valueodd
: padding is mirrored is done by using 2 * edge value - mirrored value
import numpy as np
# create a 1D array
array1 = np.array([1, 3, 5, 9, 11])
# pad the array using reflect mode and even reflect_type
array2 = np.pad(array1, pad_width=2, mode='reflect')
# pad the array using reflect mode and odd reflect_type
array3 = np.pad(array1, pad_width=2, mode='reflect', reflect_type='odd')
# pad the array using symmetric mode and even reflect_type
array4 = np.pad(array1, pad_width=2, mode='symmetric', reflect_type='even')
# pad the array using symmetric mode and odd reflect_type
array5 = np.pad(array1, pad_width=2, mode='symmetric', reflect_type='odd')
print("Array padded with reflect mode and even reflect_type:\n", array2)
print("Array padded with reflect mode and odd reflect_type:\n", array3)
print("Array padded with symmetric mode and even reflect_type:\n", array4)
print("Array padded with symmetric mode and odd reflect_type:\n", array5)
Output
Array padded with reflect mode and even reflect_type: [ 5 3 1 3 5 9 11 9 5] Array padded with reflect mode and odd reflect_type: [-3 -1 1 3 5 9 11 13 17] Array padded with symmetric mode and even reflect_type: [ 3 1 1 3 5 9 11 11 9] Array padded with symmetric mode and odd reflect_type: [-1 1 1 3 5 9 11 11 13]
Example 7: Padding With 'wrap' mode
In numpy.pad()
, 'wrap'
mode pads the array with a circular wrap of the array. It supports no additional arguments.
import numpy as np
# create a 1D array
array1 = np.array([1, 2, 3, 4])
# pad the array using wrap mode, which wraps the array values around cyclically
array2 = np.pad(array1, pad_width=1, mode='wrap')
# pad the array with wider padding using wrap mode
array3 = np.pad(array1, pad_width=2, mode='wrap')
print("Array padded with wrap mode:\n", array2)
print("Array padded with wrap mode and wider padding:\n", array3)
Output
Array padded with wrap mode: [4 1 2 3 4 1] Array padded with wrap mode and wider padding: [3 4 1 2 3 4 1 2]
Example 8: Padding With 'empty' mode
In numpy.pad()
, 'empty'
mode pads the input array using uninitialized values. It supports no additional arguments.
import numpy as np
# create a 1D array
array1 = np.array([1, 2, 3, 4])
# pad the array using empty mode, which pads with empty values
array2 = np.pad(array1, pad_width=1, mode='empty')
print("Array padded with empty mode:\n", array2)
Output
Array padded with empty mode: [ 4253 1 2 3 4 723435939191610164]
Note: The numbers used for padding are not random, they are uninitialized/garbage values.
Using Custom Padding Function as mode
You can define a custom padding function to pad an array. It has the following signature:
padding_func(vector, iaxis_pad_width, iaxis, kwargs)
where
vector
: a rank 1 array already padded with zerosiaxis_pad_width
: a tuple with 2 elementsiaxis_pad_width[0]
is the number of values padded at the beginning of vectoriaxis_pad_width[1]
is the number of values padded at the end of vector
iaxis
: axis currently being calculatedkwargs
: any keyword arguments that the function requires
For example,
import numpy as np
# custom padding function
def custom_padding(arr, pad_width, iaxis,kwargs):
#pad with 2 before the array
arr[:pad_width[0]] = 2
#pad with 3 after the array
arr[-pad_width[1]:] = 3
# create a 1D array
array1 = np.array([1, 2, 3, 4])
# pad the array using the custom padding function as the mode
padded_array = np.pad(array1, 2, custom_padding)
print("Original Array:\n", array1)
print("Padded Array using Custom Padding Function as Mode:\n", padded_array)
Output
Original Array: [1 2 3 4] Padded Array using Custom Padding Function as Mode: [2 2 1 2 3 4 3 3]